Function calling in SambaNova Cloud enables dynamic workflows by allowing the model to select and suggest function calls based on user input, which helps in building agentic workflows. By defining a set of functions, or tools, you provide context that lets the model recommend and fill in function arguments as needed.
How function calling works
Function calling enables adaptive workflows that leverage real-time data and structured outputs, creating more dynamic and responsive model interactions.
- Submit a Query with tools: Start by submitting a user query along with available tools defined in JSON Schema. This schema specifies parameters for each function.
- The model processes and suggests: The model interprets the query, assesses intent, and decides if it will respond conversationally or suggest function calls. If a function is called, it fills in the arguments based on the schema.
- Receive a model response: You’ll get a response from the model, which may include a function call suggestion. Execute the function with the provided arguments and return the result to the model for further interaction.
Supported models
- Meta-Llama-3.1-8B-Instruct
- Meta-Llama-3.1-405B-Instruct
- Meta-Llama-3.3-70B-Instruct
Meta recommends using Llama 70B-Instruct or Llama 405B-Instruct for applications that combine conversation and tool calling. Llama 8B-Instruct cannot reliably maintain a conversation alongside tool-calling definitions. It can be used for zero-shot tool calling, but tool instructions should be removed for regular conversations.
Example usage
The examples below describe each step of using function calling with an end-to-end example after the last step.
Step 1: Define the function schema
Define a JSON schema for your function. You will need to specify:
- The name of the function.
- A description of what it does.
- The parameters, their data types, and descriptions.
Example schema for solving quadratic equations
{
"type": "function",
"function": {
"name": "solve_quadratic",
"description": "Solves a quadratic equation given coefficients a, b, and c.",
"parameters": {
"type": "object",
"properties": {
"a": {"type": "integer", "description": "Coefficient of the squared term"},
"b": {"type": "integer", "description": "Coefficient of the linear term"},
"c": {"type": "integer", "description": "Constant term"},
"root_type": {"type": "string", "description": "Type of roots to return: 'real' or 'all'"}
},
"required": ["a", "b", "c"]
}
}
}
When sending a request to SN Cloud, include the function definition in the tools parameter and set tool_choice to the following:
auto : allows the model to choose between generating a message or calling a function. This is the default tool choice when the field is not specified.
required : This forces the model to generate a function call. The model will then always select one or more function(s) to call.
- To enforce a specific function call, set
tool_choice = {"type": "function", "function": {"name": "solve_quadratic"}}. This ensures the model will only use the specified function.
import openai
import cmath
import json
# Initialize the client with SN Cloud base URL and your API key
client = openai.OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key="YOUR SAMBANOVA API KEY"
)
def solve_quadratic(a, b, c, root_type="real"):
"""
Solve a quadratic equation of the form ax^2 + bx + c = 0.
"""
discriminant = b**2 - 4*a*c
if root_type == "real":
if discriminant < 0:
return [] # No real roots
else:
root1 = (-b + discriminant**0.5) / (2 * a)
root2 = (-b - discriminant**0.5) / (2 * a)
return [root1, root2]
else:
root1 = (-b + cmath.sqrt(discriminant)) / (2 * a)
root2 = (-b - cmath.sqrt(discriminant)) / (2 * a)
return [
{"real": root1.real, "imag": root1.imag},
{"real": root2.real, "imag": root2.imag}
]
# Define user input and function schema
user_prompt = "Find all the roots of a quadratic equation given coefficients a = 3, b = -11, and c = -4."
messages = [
{
"role": "user",
"content": user_prompt,
}
]
tools = [
{
"type": "function",
"function": {
"name": "solve_quadratic",
"description": "Solves a quadratic equation given coefficients a, b, and c.",
"parameters": {
"type": "object",
"properties": {
"a": {"type": "integer", "description": "Coefficient of the squared term"},
"b": {"type": "integer", "description": "Coefficient of the linear term"},
"c": {"type": "integer", "description": "Constant term"},
"root_type": {"type": "string", "description": "Type of roots: 'real' or 'all'"}
},
"required": ["a", "b", "c"]
}
}
}
]
response = client.chat.completions.create(
model="Meta-Llama-3.3-70B-Instruct",
messages=messages,
tools=tools,
tool_choice="required"
)
print(response)
If the model chooses to call a function, you will find tool_calls in the response. Extract the function call details and execute the corresponding function with the provided parameters.
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# If tool call is present
if tool_calls:
tool_call = tool_calls[0]
function_name = tool_call.function.name
arguments = tool_call.function.arguments
arguments = json.loads(arguments)
# Call the appropriate function with parsed arguments
if function_name == "solve_quadratic":
result = solve_quadratic(
a=arguments["a"],
b=arguments["b"],
c=arguments["c"],
root_type=arguments.get("root_type", "real")
)
print(result)
Step 4: Provide function results back to the model
Once you have computed the result, pass it back to the model to continue the conversation or confirm the output.
# Convert result to JSON string format to return to model
function_response = json.dumps({"result": result})
# Provide the function response back to the model as a message
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response
}
)
# Second API call to incorporate the function result into conversation
second_response = client.chat.completions.create(
model="Meta-Llama-3.3-70B-Instruct",
messages=messages,
)
# print the final response from the model
print(second_response.choices[0].message.content)
Step 5: Example output
An example output is shown below.
The roots of the quadratic equation with coefficients a = 3, b = -11, and c = -4 are 4 and -1/3.
End-to-end example using OpenAI compatibility
End-to-end example using OpenAI compatibility
import openai
import cmath
import json
# Define the OpenAI client
client = openai.OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key="YOUR SAMBANOVA API KEY"
)
MODEL = 'Meta-Llama-3.3-70B-Instruct'
# Function to solve the quadratic equation
def solve_quadratic(a, b, c, root_type="real"):
"""
Solve a quadratic equation of the form ax^2 + bx + c = 0.
"""
discriminant = b**2 - 4*a*c
if root_type == "real":
if discriminant < 0:
return [] # No real roots
else:
root1 = (-b + discriminant**0.5) / (2 * a)
root2 = (-b - discriminant**0.5) / (2 * a)
return [root1, root2]
else:
root1 = (-b + cmath.sqrt(discriminant)) / (2 * a)
root2 = (-b - cmath.sqrt(discriminant)) / (2 * a)
return [
{"real": root1.real, "imag": root1.imag},
{"real": root2.real, "imag": root2.imag}
]
# Function to run conversation and provide tool result back to the model
def run_conversation(user_prompt):
# Initial conversation with user input
messages = [
{
"role": "system",
"content": "You are an assistant that can solve quadratic equations given coefficients a, b, and c."
},
{
"role": "user",
"content": user_prompt,
}
]
# Define the tool
tools = [
{
"type": "function",
"function": {
"name": "solve_quadratic",
"description": "Solve a quadratic equation given coefficients a, b, and c.",
"parameters": {
"type": "object",
"properties": {
"a": {"type": "integer", "description": "Coefficient of the squared term."},
"b": {"type": "integer", "description": "Coefficient of the linear term."},
"c": {"type": "integer", "description": "Constant term."},
"root_type": {"type": "string", "description": "Type of roots: 'real' or 'all'."}
},
"required": ["a", "b", "c"],
}
}
}
]
# First API call to get model's response
response = client.chat.completions.create(
model=MODEL,
messages=messages,
tools=tools,
tool_choice="auto",
max_tokens=500
)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
# If tool call is present
if tool_calls:
tool_call = tool_calls[0]
function_name = tool_call.function.name
arguments = tool_call.function.arguments
arguments = json.loads(arguments)
# Call the appropriate function with parsed arguments
if function_name == "solve_quadratic":
result = solve_quadratic(
a=arguments["a"],
b=arguments["b"],
c=arguments["c"],
root_type=arguments.get("root_type", "real")
)
# Convert result to JSON string format to return to model
function_response = json.dumps({"result": result})
# Provide the function response back to the model as a message
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response
}
)
# Second API call to incorporate the function result into conversation
second_response = client.chat.completions.create(
model=MODEL,
messages=messages,
max_tokens=500
)
# Return the final response from the model
return second_response.choices[0].message.content
# Example user prompt
user_prompt = "Find all the roots of a quadratic equation given coefficients a = 3, b = -11, and c = -4."
print(run_conversation(user_prompt))
JSON mode
You can set the response_format parameter to json_object in your request to ensure that the model outputs a valid JSON. In case the mode is not able to generate a valid JSON, an error will be returned.
In case the model fails to generate a valid JSON, you will get an error message Model did not output valid JSON.
import openai
# Define the OpenAI client
client = openai.OpenAI(
base_url="https://api.sambanova.ai/v1",
api_key="YOUR SAMBANOVA API KEY"
)
MODEL = 'Meta-Llama-3.3-70B-Instruct'
def run_conversation(user_prompt):
# Initial conversation with user input
messages = [
{
"role": "system",
"content": "Always provide the response in this JSON format: {\"country\": \"name\", \"capital\": \"xx\"}"
},
{
"role": "user",
"content": user_prompt,
}
]
# First API call to get model's response
response = client.chat.completions.create(
model=MODEL,
messages=messages,
max_tokens=500,
response_format = { "type": "json_object"},
# stream = True
)
response_message = response.choices[0].message
print(response_message)
run_conversation('what is the capital of Austria')
ChatCompletionMessage(content='{"country": "Austria", "capital": "Vienna"}', role='assistant', function_call=None, tool_calls=None)